
Identification of topological phases using RBMs
A. Valenti,1 E. Greplova,1, N.H. Lindner2 and S.D. Huber1

1Institute for Theoretical Physics, ETH Zurich, CH-8093, Switzerland

2Department of Physics, Technion, 3200003, Haifa, Israel

Motivation
◮Restricted Boltzmann machines (RBMs) have proven to efficiently represent wide class of states with rich topological orders

◮Can topological phase transitions be encaptured? We straightforwardly modify the RBM structure to allow for more flexible

representation of correlations → Modification allows to reproduce the toric code phase diagram and improves RBM accuracy

also for other models
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◮Toric ground state |TC〉:

exactly solvable

Understanding the phase diagram: Toric code with fields
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◮ in general not exactly solvable, QMC sign problem

→ explore variational wave-functions

A Yu Kitaev, Ann. Phys. 2003

Modifying RBMs

RBM structure
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→ |TC〉 is exact RBM

◮Toric code + fields: RBM not efficient

Modify structure: correlated RBM

Solution:

introduce visible neurons,

values determined by

correlations 〈si..sl〉

visible layer

hidden layer

G. Carleo and M. Troyer, Science 2017

DL Deng, X. Li and S. Das Sarma, Phys. Rev. B 2017



Results I: energies

Hamiltonian: H = HTC + hx
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Comparison: RBM and correlated RBM

◮compare with ED: L = 3 (18 spins)

◮symmetrize ansatz: use translational symmetries
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E → variational ansatz

including correlators

is more efficient

Precision in different field sectors

0.00 0.25 0.50 0.75 1.00 1.25

field strength h in (1, 1, 0)-direction

2.0

1.8

1.6

1.4

1.2

1.0

e
n
e
rg

y
 p

e
r 

s
p
in

 
E

/N

10 5

10 4

10 3

10 2

re
la

ti
v
e
 e

rr
o
r 

E

◮precision still high in presence of y-fields,

but lowest at phase transition

Results II: top. phase transition

Fidelity: detecting phase transitions

◮second order QPT detectable via minimum in fidelity

F (∆h) = 〈Ψ(h)|Ψ(h +∆h)〉
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Wilson loops: detecting topological order

◮examine Wilson loop 〈Bp1Bp2〉 scaling
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→ correlated RBM can encapture topological phase transition



Explore representational power

Can we improve the RBM accuracy by including correlators also

for different models?

Toy model: transverse field Ising 2D
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Comparison: RBM and correlated RBM

◮use small amount of hidden neurons to compare efficient

representation, no symmetries imposed

◮correlated RBM with only bond correlators sisj
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=⇒ precision order of magnitude better, when correlators are

included!

◮explore class of models where correlators improve efficiency

◮analyse scaling

Learning phase transitions
Identifying phase transitions is one of the key questions in theoretical and

experimental condensed matter physics alike. Can we find a neural-network

based tool to detect quantum phase transitions that is generic, unbiased and

accessible to typical numerical and experimental techniques?

Phase transition from measurements
Neural networks: find transitions without prior knowledge

Train network to reproduce continuous parameter β (field on TC)

◮ Idea: difference in network performance in the two phases

=⇒ deriv. of the network prediction diverges at phase transition!

Network input

◮Recognize patterns: feed in measured projection on spin-

configurations S
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◮Compare with phase transition found with fidelity 〈Ψ(β)|Ψ(β+δβ)〉

=⇒ topological phase transition identified by neural network!

E. Greplova, A. Valenti et al., NJP (2020)


