
  

Projector Monte Carlo

● exact ground state of many-boson systems in polynomial time
● exact ground state of many-fermion  systems in exponential time
● “supervariational”  ground state of many-fermion systems in polynomial time

● (excited states)
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for given      , better than

a stochastic implementation of the power method for: 



  

● Representative projection Monte Carlo simulations

● The power method

● Random walks, Metropolis algorithm

● Variational Monte Carlo, correlated wave functions

● Projection Monte Carlo
- diffusion Monte Carlo
- the sign problem
- fixed-node approximation
- variational path integral

● Variational and diffusion Monte Carlo simulation of the 2D electron gas

Outilne



  

A typical simulation took 20 hours on a CDC6600 
(1CPU @ 10MHz, 1Mbyte memory)



  



  

energy vs. variance of the local energy 
for wave functions of different quality

polarization energy 

improved structure and optimization of wave functions, 
better control of size effects, faster computers 



  

The power method 

is a                 matrix with eigenvalues        and eigenvectors

is the largest eigenvalue

expansion of a generic state in eigenstates of 

The application of          to       projects out the eigenvector with the largest eigenvalue: 

This can be done iteratively, so we only need to (repeatedly) apply       to a state: 



  

The power method 

iterative eigensolvers:

deterministic stochastic

Examples: Lanczos, Davidson Examples: PMC, random walk sampling

given     calculate given a sample from     get a sample from

problem: the full many-body state
Has                       components

problem: can’t sample from a signed solution



  

Monte Carlo integration

suppose we want to calculate

example:                                                                                     canonical thermal average

a configuration in D dimensions 

a probability distribution 

● sample a set                                 of configurations from the distribution

● the sample average                                is an unbiased estimate of

● if the variance                           of       is finite       is normally distributed (for large K);

the standard deviation of       is estimated from the data as

where           

Random walk sampling gives correlated data (            ) but can sample arbitrary distributions

                                  scaling 
of statistical error independent of D



  

 

If a stochastic matrix is ergodic, it has a non-negative (left) eigenstate  

with eigenvalue 1, 

and all the other eigenvectors            have eigenvalues              , hence 

Random walks  (i.e. how to sample from an arbitrary probability using the power method)

In a random walk we change the configuration    of our system (e.g. the coordinates 
of all the particles) to a configuration      randomly sampled with probability                ,
thus generating a sequence                                             Markov chain
      
   is a probability, hence                           and                                 : it is a “stochastic matrix”. 

unique stationary state

If      is sampled from the (positive) state   , the configuration      will be sampled from
        and so on, and after the stationary state is reached for      large enough all 

configurations will be sampled from    . 



  

 
Random walks  (i.e. how to sample from an arbitrary probability using the power method)

 Now, we don’t want to sample from the stationary state    of a given M, but from a given 

●  A useful property: detailed balance

●  Metropolis algorithm:

➔ choose a probability                of proposing the move

➔ calculate the probability                of accepting the move using the given     :

➔ the resulting                  does verify the detailed balance condition, hence it 

 

  does have the given      as its unique stationary state

ergodic
can be directly sampled

only ratio of     ‘s  needed



  

Variational Monte Carlo      (in coordinate representation,                                      ) 

local energy

(unnormalized) probability density 

Monte Carlo estimate
with statistical error

sample average

configurations sampled from            after equilibration

    is the autocorrelation time of the data

(we have          independent samples) 

definition of the variational energy



  

Correlated wave functions

For the sake of practical reference, we consider the homogeneous electron gas

(energy units of Ry and length units of          , where                                      ) 

   We start from a mean-field solution and construct a hierarchy of improved wave function 
making the local energy smoother and smoother. The rationale is that for an exact eigenstate

  of       the local energy                                                                  is a constant

● level 0 of the hierarchy: Hartree wave function 
➔ we assume spin-polarized electrons
➔ the antisymmetrization can be done afterwards, on the improved wave function

➔ the local energy is

➔ No choice of one-particle orbitals can modify the red term:
we need a pair-product (Jastrow) factor in the wave function. 



  

Correlated wave functions

● level 1: Jastrow wave function 

➔ the divergence of the potential is removed from the local energy by the cusp condition,

 
➔ the long-range behavior is given by the zero-point motion of the plasmon,

➔ the RPA pseudopotential interpolates between these two limits

(otherwise one can parametrize u(r) and optimize numerically)

➔ however no choice of u(r) can eliminate new terms in the local energy such as
 or

we need three-body correlations and combination of orbitals with pair correlations 



  

Correlated wave functions

● level 2: Jastrow-three-body-backflow wave function

●  

many other options (different mean-field starting points such as geminals or pfaffians,
multideterminants, generalized and/or iterated backflow, neural networks, ...)



  

                                         Projection Monte Carlo  

a function of the Hamiltonian which projects out the ground state

 a trial function 

a step of the power method:  

exact ground state energy and wave function 

evolution in imaginary time (other functions of H can be used) 

Stochastic implementation: like in a Markov chain (assuming a positive wave function) 
given         sampled from                 we get a sample            of   
using the matrix  
 



  

                         Projection Monte Carlo: diffusion Monte Carlo  

in coordinate representation a short-time approximation of      is  

● the first term (diffusion) implies a gaussian displacement which can be directly sampled
● the second term (growth/decay) implies multiplication of the distribution by a positive weight

The combined process is simulated with a branching random walk:

➔ initialize        walkers                                           sampled from             (the 0 th generation)
➔ iterate: advance each walker          to the                    generation:

➔ every so often adjust                                                       to control the population
➔ after P generations (stationary distribution reached) accumulate averages

displace          to a position      sampled from                                               (diffusion)
make a number                                                               of copies of         (branching)

The extrapolation of the results to              and                     is exact within the statistical error

 

   
                                                                     



    uniform deviate in (0,1)

       current n. of walkers  

      current est. of energy



  

The scheme described suffers from large fluctuations of the potential in the branching factor.
        Diffusion Monte Carlo is made vastly more efficient using importance sampling 

importance sampled Green’s function

mixed distribution

short time approximation of      : 

new drift term            replaces        
in the branching factor

             Projection Monte Carlo: importance sampled diffusion Monte Carlo  



  

● The importance sampled process is simulated with a different branching random walk: 

➔ initialize        walkers                                           sampled from              (the 0 th generation)
➔ iterate: advance each walker          to the                    generation:

➔ every so often adjust                                                       to control the population
➔ after P generations (stationary distribution reached) accumulate averages

displace          to a position                                                                                   (drift)

further displace to a position       sampled from                                              (diffusion)

make a number                                                                 of copies of         (branching)

The extrapolation of the results to              and                     is exact within the statistical error

 

● The stationary distribution of the random walk is 

             Projection Monte Carlo: importance sampled diffusion Monte Carlo  



  

                                         Projection Monte Carlo:calculating properties  

Sampling the mixed distribution we can calcolate mixed estimators:

this is good for the energy because of the low variance of        for good wave functions.

If                       the mixed estimator is biased,                                                                        .

Extrapolated estimators,                           or                     with                                 have a
bias                            . 

Unbiased estimates of                      can be obtained with the “forward walking” technique,
which however is numerically unstable, or with “variational path integral” methods, which
however are not (yet) very popular.



  

                                         Projection Monte Carlo: technicalities 

Two examples of technical details that increase the efficiency significantly: 

● Rejection step: walkers are displaced with the drift-diffusion part of        ,
 

It is common practice to accept the move with probability
If the trial function is the exact ground state, this restores 
the detailed balance condition of the exact Green’s function and eliminates the time 
step error. For approximate trial functions, it reduces the time step error allowing to 
use larger time steps with smaller autocorrelation times

● At the nodes the local energy diverges for approximate trial functions and the drift
term diverges for both approximate and exact trial functions. Fluctuations, particularly
in the branching factor, are reduced by replacing in the drift and in the branching

                                                                              and

 

when
divergences of         and
cancel out



  

                                                 Sign problem  

Fermionic wave functions have a sign. Exact Monte Carlo calculations are still
possible but their computational cost scales exponentially with the system size.

                                                                           fermionic ground state energy.
                                                                         

      and       are evaluated at configurations connected by a random walk and
their signs     and       may change. We can rewrite         in terms of positive
quantities that can be sampled:

both the numerator and the denominator can be calculated sampling the 
positive distribution    



  

                                                 Sign problem  

analysis of the
denominator:

imaginary time evolution of a fermionic state:

imaginary time evolution of a bosonic state:

 
Our denominator is                                                 exponentially small, and we need
a correspondingly small statistical error     to calculate        without dividing by ~zero . 
The computational cost                 grows exponentially with the system size  



  

                                                 Fixed Node Approximation 

The nodal surface S of a fermion wave function      is the                     -dimensional set 

defined by  the equation               where     is the dimension of the physical space.

For the ground state, S divides the           -dimensional space of the configurations into

equivalent nodal cells where      has the same sign, so that if the exact S were known 

one could calculate exact ground state properties without a sign problem restricting the 

random walk into one cell. 

The FN approximation assumes that the nodes of the solution are the same as the 

nodes of the trial function       and solves for         , the lowest-energy eigenstate of H 

with that nodal surface.

It gives a lower upper bound to       than the VMC energy, and it is exact if the nodes are

exact.

It is easily implemented in Projection MC by rejecting the move if the sign of      changes 

   



  

                                   Projection Monte Carlo: Variational Path Integral 

imaginary time evolution of the trial function

path integral representation

                      ground-state matrix element

 unbiased estimators obtained by Metropolis sampling in an enlarged configuration space:

is positive for bosons and fixed-node fermions

● No population control error
● No importance sampling (an advantage for poor trial functions or large systems)
● Unbiased estimators, including nonlocal properties (OBDM)
● Imaginary time correlation functions: static and (some) dynamic linear response 

results are exact (bar the FNA) in the limit of large      and small
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