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a stochastic implementation of the power method for:

e exact ground state of many-boson systems in polynomial time
* exact ground state of many-fermion systems in exponential time
* “supervariational” ground state of many-fermion systems in polynomial time

k-» for given W, better than (W |H |)

* (excited states)
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Representative projection Monte Carlo simulations
The power method

Random walks, Metropolis algorithm

Variational Monte Carlo, correlated wave functions
Projection Monte Carlo

- diffusion Monte Carlo

- the sign problem

- fixed-node approximation

- variational path integral

Variational and diffusion Monte Carlo simulation of the 2D electron gas
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Helium at zero temperature with hard -sphere and other forces
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(Received 22 August 1973)

Various theoretical and numermal problems relating to heliumlike systems in their ground
states are treated. Ne the numerical solution of the Schridinger equation
permit the solution ith hard-sphere forces. Using periodic boundary
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A typical simulation took 20 hours on a CDC6600
(1CPU @ 10MHz, 1Mbyte memory)
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FIG. 2. “Exact” energy per particle as a function of
1/pa’.
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Ground State of the Electron Gas by a Stochastic Method
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An exact stochastic simulation of the Schroedinger equation for charged bosons and
fermions has been used to caloulate the correlation energies, to Iocate the transitions
to their respective erystal phases at zero temperature within 10%, and to establish the
stability at intermediate densities of a ferromagnetic fluid of electrons.
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FIG. 1. The energy in rydbergs per particle of a 38- ©
electron system at the density v, = 10 vs diffusion time
(in inverse Rydbergs) from removal of the fixed nodes.
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FIG. 2. The energy of the four phases studied relative to that of the lowest boson state tlmes v, * in rydbergs vs




energy vs. variance of the local energy
for wave functions of different quality
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Itinerant-Electron Magnetism: The Importance of Many-Body Correlations w e
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Do electrons become ferromagnetic just because of their repulsive Coulomb interaction? Our r=100
calculations on the three-dimensional electron gas imply that itinerant ferromagnetism of delocalized r= 70 /
=

electrons without lattice and band structure, the most basic model considered by Stoner, is suppressed due
o many-body correlations as speculated already by Wigner, and a possible ferromagnetic transition
lowering the density is precluded by the formation of the Wigner crystal.
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polarization energy

improved structure and optimization of wave functions,
better control of size effects, faster computers



The power method

Mv; = Aiv; M isa N x N matrix with eigenvalues A; and eigenvectors V;
max{A;} = Ay Ay is the largest eigenvalue
V= E GV expansion of a generic state in eigenstates of

i

The application of M to V projects out the eigenvector with the largest eigenvalue:

P P
17 P P P C; Ai . Ai B
M v = E Ci\; Vi =CNAy | VN + E . (A;\;) \'2 lim (/\—) =0

Cn P—oo N
"a’i f < i'\\‘r :\ i

This can be done iteratively, so we only need to (repeatedly) apply M to a state:

M"v =M (M""'v) = MV’



The power method

iterative eigensolvers:

deterministic
Examples: Lanczos, Davidson

given v calculate M v

problem: the full many-body state
Has ~ exp(/Np) components

stochastic
Examples: PMC, random walk sampling

given a sample from v get a sample from M v

problem: can’'t sample from a signed solution



f?r dr = 1

T ( j a probablllty distribution

Monte Carlo integration Tr a configuration in D dimensions
suppose we want to calculate (f) = f 7(x)f(x)dx {

example: 7 =¢e¢ "V /Z (fy =+ fe_-*'wqu: canonical thermal average
- sample a set {xy, T9, ..., T jof configurations from the distribution 77(x)
+ the sample average f = = Zﬁ_l f}-is an unbiased estimate of (f)

 ifthe variance ((f — (f))?) of f isfinite f is normally distributed (for large K):

the standard deviation of ? is estimated from the dataas € = 4/ CV/ K

here V = & - VK
Where K-1 —1 ’E‘? l(ﬂ 7 x 1/v K scaling
c=1+2) " c(i) of statistical error independent of D

c(i) = prT i}l?(h‘ Niri = 1)

Random walk sampling gives correlated data ( ¢ > 1) but can sample arbitrary distributions



Random walks (i.e. how to sample from an arbitrary probability using the power method)

In a random walk we change the configuration S of our system (e.g. the coordinates
of all the particles) to a configuration s’ randomly sampled with probability Jf(@ S )
thus generating a sequence { 50, S1, 52, - } <¢—— Markov chain

M is a probability, hence M (s. s’) > () and ZS; M(s, s ) = 1:itis a “stochastic matrix”.

If a stochastic matrix is ergodic, it has a non-negative (left) eigenstate Tr(sj
with eigenvalue 1,
Yo m(s)M(s,s") =7(s") « unique stationary state

and all the other eigenvectors VJ( ) have eigenvalues A; < 1 hence

vl = vMP =1+ > rg/\PV;PT T

If Sis sampled from the (positive) state v, the configuration s; will be sampled from
V“) and so on, and after the stationary state is reached for P large enough all
configurations will be sampled from 7.



Random walks (i.e. how to sample from an arbitrary probability using the power method)
Now, we don’t want to sample from the stationary state 7 of a given M, but from a given 7

* A useful property: detailed balance

m(s)M(s,s') =m(s)M(s',s) = Zﬂ' )M (s, s') = m(s')

» Metropolis algorithm: M (s, s") = T'(s, s’ ]A(@ s')

> choose a probability 7'(s, s") of proposing the move { : i;ioslecdirectly sampled

> calculate the probability A(S, S”) of accepting the move using the given 7 :

, m(s")T(s, s)
A(s,s') =min{ 1 | | ‘
( ) ) { ) ?T(S) T(S: S,) @ only ratio of ‘s needed

> the resulting flff(sj 5’) does verify the detailed balance condition, hence it
does have the given 77 as its unique stationary state



Variational Monte Carlo  (in coordinate representation, R = {I‘l, Ce e I'NP})

Ey = (V|H|) /(V|P) > definition of the variational energy
(V|H|V) = [ 4o (xpm)(mm VdR = [ 7(R)EL(R)dR

EL(R) = (R\H\ )/(RIY) = [(—£=V*+V)¥(R)]/¥(R) local energy
( — \KIJ( | (unnormalized) probability density

—L} —9
jon f’T dR _F, 4+ ¢(E7 — E7)  Monte Carlo estimate
v J‘ = - L K — 1 with statistical error

f=1/K Zf:l_ (R;f) sample average

{Ri,...,Rg} configurations sampled from m(R) after equilibration
¢ is the autocorrelation time of the data { f(R,), ..., f(Rg)}
(we have K /¢ independent samples)




Correlated wave functions

For the sake of practical reference, we consider the homogeneous electron gas

(energy units of Ry and Iength units of 7.agp, where 7' 3/—1?1‘,0 l”/a{
2 1
H = ——ZVZ—l—— Z +const
2 s 4= r; — 1}

We start from a mean-field solution and construct a hierarchy of improved wave function
making the local energy smoother and smoother. The rationale is that for an exact eigenstate

®; of H the local energy E;(R) = (R\H\@;)/({?@,) — [ is a constant
4 'Tp

« level 0 of the hierarchy: Hartree wave function W, = H e}{p(?jk.ﬁ * r.ij

> we assume spin-polarized electrons i=1
> the antisymmetrization can be done afterwards, on the improved wave function

2 2
> the local energy is /73 Zk F2/7y Zl”u

1<
> No choice of one-particle orbltals can modity the red term:
we need a pair-product (Jastrow) factor in the wave function.



Correlated wave functions

Np
* level 1: Jastrow wave function V| = H exp(ik; - r;) exp|— Z u(ri;)]
i—1 i<j

> the divergence of the potential is removed from the local energy by the cusp condition,

1111{1] du(r)/dr = —1/4r,
r—
> the long-range behavior is given by the zero-point motion of the plasmon,

im u(r) = +/rg/3/r

r—00
> the RPA pseudopotential interpolates between these two limits

Quppa(k) = —1/So(k)+[1/So(k)? + 2V (k)r2/k*] *

(otherwise one can parametrize u(r) and optimize numerically)

> however no ch0|ce of ufr) can eliminate new terms in the local energy such as
u' (i) uw (1)t - Tie or U "(ri)ki - Ty
we need three-body correlatlons and combination of orbitals with pair correlations



Correlated wave functions

 level 2: Jastrow-three-body-backflow wave function
;'T\'rp

Py = H exp(tk; - x;) exp|— Z u(ri;) — Z G; G/

1=1 1<)
X; =1TI; + Z 'U('raj)(rf. — I'j)
JF#
Gi=) &(ry)(ri—xj)

el

many other options (different mean-field starting points such as geminals or pfaffians,
multideterminants, generalized and/or iterated backflow, neural networks, ...)



Projection Monte Carlo

v(s) — W(R)  atrial function

T(H—FET)

M — e a function of the Hamiltonian which projects out the ground state

k» evolution in imaginary time (other functions of H can be used)

a step of the power method: Iy :”H G R R T F})(H’)dR”

—17(H—E7T)
lim UO(R) = cpePTEEDQ( R\ YIR')

P—oo
exact ground state energy and wave function

Stochastic implementation: like in a Markov chain (assuming a positive wave function)
given R p sampled from (¥ )(R) we get a sample R p. 1 of IIJ(*”H)(R)
using the matrix &



/

Projection Monte Carlo: diffusion Monte Carlo -

in coordinate representation a short-time approximation of (7 is

G(R, stﬂ _ e—{R—R’)Ej--l}\re—T[L‘"{R}—ET: 4 O(’TQ) \

\ = h? /2m

FE. current est. of energ

™~

- 5 uniform deviate in (0,1)
= N, current n. of walkers

y

/

* the first term (diffusion) implies a gaussian displacement which can be directly sampled
* the second term (growth/decay) implies multiplication of the distribution by a positive weight

The combined process is simulated with a branching random walk:

T

> initialize /V,,, walkers{ R;.0, ¢ =1,..., N,
> iterate: advance each walker [?;.. to the (k + 1)™ generation:

displace R;.; to a position ' sampled from exp[— (R — R.g:_;;f)g/il/\?'] (diffusion)
make a number int{& + exp|—7(V(R') — E7)|} of copies of R’ (branching)

> every so often adjust £ — FE, + aIn(N," /N,,) to control the population
> after P generations (stationary distribution reached) accumulate averages

}samoled from \II(R) (the O™ generation)

The extrapolation of the results to 7 — (Jand ]\-f, — 00 is exact within the statistical error



Projection Monte Carlo: importance sampled diffusion Monte Carlo

The scheme described suffers from large fluctuations of the potential in the branching factor.
Diffusion Monte Carlo is made vastly more efficient using importance sampling

;}—I—l( fG R Rf ) (p)(RI)de
U(R)WPI(R) = [ V(R)G(R, R, 7) /U (R (RYEP(RdR
f"”+l (R) = [ G(R, R, ) f"(R)dR’
G(R R . 17)=V(R)G(R,R',7)/V(R’) importance sampled Green's function
f(‘D)(R) = U(R)UP) R) ;CI\II(R)(I’Q(R) mixed distribution
short time approximation of 5
G(R Rr ) —(R— [R"—I—,;lnlli (R"])? /l}nT —T/[LJ;IHI ET]_|_0( )
new drift term E'; replaces V'

in the branching factor



Projection Monte Carlo: importance sampled diffusion Monte Carlo

* The importance sampled process is simulated with a different branching random walk:

> initialize N* walkers{ R;.0, © = 1,..., N, }sampled from 1112[]1’.:) (the 0™ generation)
> iterate: advance each walker I2;.j to the (k + 1)™ generation:

displace R.i: to a position R = R;j. + A7V In U*(R; ;) (drift)
further displace to a position 12’ sampled from exp[— (R — R”)Q/él)vr] (diffusion)
make a number int{& + exp[—7(F(R') — E7)]} of copies of (branching)

> every so often adjust £ — FE, + aIn(N," /N,,) to control the population
> after P generations (stationary distribution reached) accumulate averages

* The stationary distribution of the random walk is QJ(R)(I)“(R)

The extrapolation of the results to 7 — (Jand N;‘, — 0O Is exact within the statistical error



Projection Monte Carlo:calculating properties
Sampling the mixed distribution we can calcolate mixed estimators:

(U|H|®o) = [(U|H|R)(R|o)dR = [ Er(R)V(R)Do(R)dR = Eq

this is good for the energy because of the low variance of F/; for good wave functions.

If |[A, H| # ( the mixed estimator is biased,
Amix — <\D‘A‘(DU> — <{DU|A‘(1)0> + O(\D _ (I)(J)

Extrapolated estimators, 24, — Ayay of A%/ Avar with Aoy = (V| A|W)have a
bias O (U — dy)?).

Unbiased estimates of (P(| A|P() can be obtained with the “forward walking” technique,
which however is numerically unstable, or with “variational path integral” methods, which
however are not (yet) very popular.



Projection Monte Carlo: technicalities

Two examples of technical details that increase the efficiency significantly:

e

* Rejection step: walkers are displaced with the drift-diffusion part of ( ,
é; = F_(R_[RF—F}.TT In IIIE(R’)DEI,MT
i1 —

. . . . : U2(R"G4(R.R' 1)
It is common practice to accept the move with probability 1min {1, 2R C (R Br }
If the trial function is the exact ground state, this restores ) Gy(R',R,7)
the detailed balance condition of the exact Green’s function and eliminates the time
step error. For approximate trial functions, it reduces the time step error allowing to
use larger time steps with smaller autocorrelation times

* At the nodes the local energy diverges for approximate trial functions and the drift
term diverges for both approximate and exact trial functions. Fluctuations, particularly
in the branching factor, are reduced by replacing in the drift and in the branching

F = v? In\v —s F _ (l-l—}uTszlle:F) and EL — EL = ELF/F

NTE2)2
T 1/2 2 - divergences of E; and F’
ATF ~ (4A7)7% when ATF= > 1 carcel out



Sign problem

Fermionic wave functions have a sign. Exact Monte Carlo calculations are still
possible but their computational cost scales exponentially with the system size.

B [ V' Hexp(—SH)VdX
[ Wexp(—BH)VdX

U and W’ are evaluated at configurations connected by a random walk and
their signs S and S” may change. We can rewrite F'r in terms of positive
guantities that can be sampled:

B [ S'|V'H exp(—BH)|V|SdX/ [ |V|exp(—FH)|V|dX
= TS exp(— BH)WSAX] [ W] exp(—BH)|W]dX

both the numerator and the denominator can be calculated sampling the
positive distribution |\V’| exp(—0H )| V|

L

fermionic ground state energy.




Sign problem

;6\1) — ﬁX/ | |1I,r;

—3Ep

analysis of the l" g
denominator:

*xp[ — :317)&

/
V-

iImaginary time evolution of a fermlonlc state: ~ ¢

iImaginary time evolution of a bosonic state: ~ e PEB

—i'?(EF—EB} —ﬁﬁrp

Our denominator is X € exponentially small, and we need
a correspondingly small statlstlcal error € to calculate /i without dividing by ~zero .
The computational cost o< 1 / €~ grows exponentially with the system size



Fixed Node Approximation

The nodal surface S of a fermion wave function @ is the (d/Np — 1)-dimensional set
defined by the equation & — () where d is the dimension of the physical space.

For the ground state, S divides the d N p -dimensional space of the configurations into
equivalent nodal cells where @ has the same sign, so that if the exact S were known
one could calculate exact ground state properties without a sign problem restricting the
random walk into one cell.

The FN approximation assumes that the nodes of the solution are the same as the
nodes of the trial function W and solves for @y, the lowest-energy eigenstate of H
with that nodal surface.

It gives a lower upper bound to f/, than the VMC energy, and it is exact if the nodes are
exact.

It is easily implemented in Projection MC by rejecting the move if the sign of I changes



Projection Monte Carlo: Variational Path Integral

Uy = o BH Y — (e—-H)quq

I

T = 5/}3’ imaginary time evolution of the trial function

Us(Ry) = f dR,...dRp [Hil G(R;, R;_1,7)| V(Rp) path integral representation
(Wp|A|Wg) = [ dRyVs(Ro)A(Ro)Va(Ry) ground-state matrix element

unbiased estimators obtained by Metropolis sampling in an enlarged configuration space:

A — fdX‘l"iR—P)[HF——PHG(R;:-.R;—l)]‘l‘(RP)A(R{}) _ fd.’{?r(i‘{).A(R“)
B [dXU(R_p)IIT _p.1 G(Ri,Ri1)]¥(Rp) [dX=(X)
7 is positive for bosons and fixed-node fermions

results are exact (bar the FNA) in the limit of large ;’3 and small 7T

* No population control error

* No importance sampling (an advantage for poor trial functions or large systems)
* Unbiased estimators, including nonlocal properties (OBDM)

* Imaginary time correlation functions: static and (some) dynamic linear response



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

