Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard model with a Gutzwiller Monte Carlo approach

D. Huybrechts and M. Wouters, University of Antwerp, TQC

1. Introduction

The dynamics of out of equilibrium systems are generally obtained through computational simulation. As the size of the Hilbert-space of these systems usually scales exponentially with system size, a clear need for efficient simulation algorithms arises. We study the driven-dissipative Bose-Hubbard model by using the quantum trajectory method. As a wave function ansatz we utilise the (Cluster) Gutzwiller ansatz. We investigate the dynamical hysteresis properties of this model and compare with mean-field results.

2. The model and method

The model Hamiltonian is given by

$$\widehat{H} = \sum_{i} \left(-\Delta \widehat{a}_{i}^{\dagger} \widehat{a}_{i} + \frac{U}{2} \widehat{a}_{i}^{\dagger} \widehat{a}_{i}^{\dagger} \widehat{a}_{i} \widehat{a}_{i} + F(\widehat{a}_{i} + \widehat{a}_{i}^{\dagger}) - \frac{J}{z} \sum_{\langle i,j \rangle} \left(\widehat{a}_{i}^{\dagger} \widehat{a}_{j} + \widehat{a}_{j}^{\dagger} \widehat{a}_{i} \right) \right),$$

with Δ the laser detuning, U the Kerr non-linearity, F the pumping strength, J the hopping amplitude and z the number of nearest neighbours.

Dissipation is introduced as the emission of a particle with a dissipation rate γ , the open system dynamics are governed by

$$\partial_t \hat{\rho} = -i \left[\hat{H}, \hat{\rho} \right] + \frac{\gamma}{2} \sum_j (2\hat{a}_i \hat{\rho} \hat{a}_i^+ - \{ \hat{a}_i^+ \hat{a}_i, \hat{\rho} \}).$$

Equivalent approach: the quantum trajectory method. We evolve the wave function with a non-unitary Hamiltonian *H*

$$\psi(t) = \frac{\exp(-iHt)\tilde{\psi}}{\left\|\exp(-iHt)\tilde{\psi}\right\|} \quad and \quad H = \hat{H} - i\frac{\gamma}{2}\sum_{i}\hat{a}_{i}^{+}\hat{a}_{i},$$

and sample quantum jumps, i.e. the spin flips using a Monte Carlo scheme

$$\psi o rac{\hat{a}_i \psi}{\|\hat{a}_i \psi\|}.$$

Computationally more efficient

Contact: dolf.huybrechts@uantwerpen.be

3. The wave function Ansatz

Cluster Gutzwiller wave function ansatz [1, 2]

$$\psi_{CGW} = \prod_{C} \psi_{C},$$

Where ψ_C lies in the Hilbert-space H_C of the cluster C.

- Inclusion of short-range quantum correlations
- Inclusion of classical correlations
- Linear scaling of Hilbert space with cluster Hilbert size.

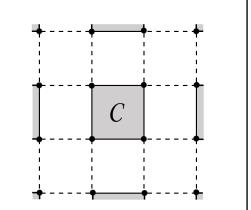
4. The parameter regime

We perform a linear sweep in pumping strength, that is

$$F(t) = (F_{start} + v_s t)\theta\left(t < \frac{t_s}{2}\right) + \left(F_{end} - v_s\left(t - \frac{t_s}{2}\right)\right)\theta\left(t \ge \frac{t_s}{2}\right),$$

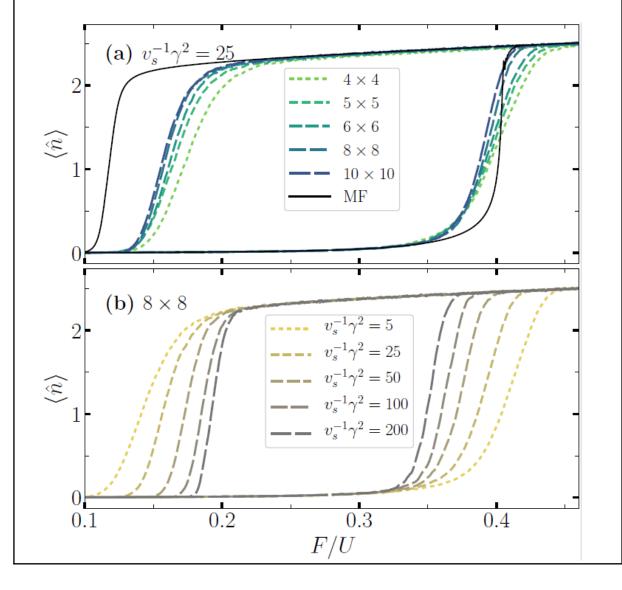
with
$$t_s$$
 the total sweep time and $v_s = \frac{2(F_{end} - F_{start})}{t_s}$

[1] W. Casteels, R. M. Wilson, and M. Wouters, Phys. Rev. A 97, 062107 (2018)
[2] D. Huybrechts and M. Wouters, Phys. Rev. A 99, 043841 (2019)

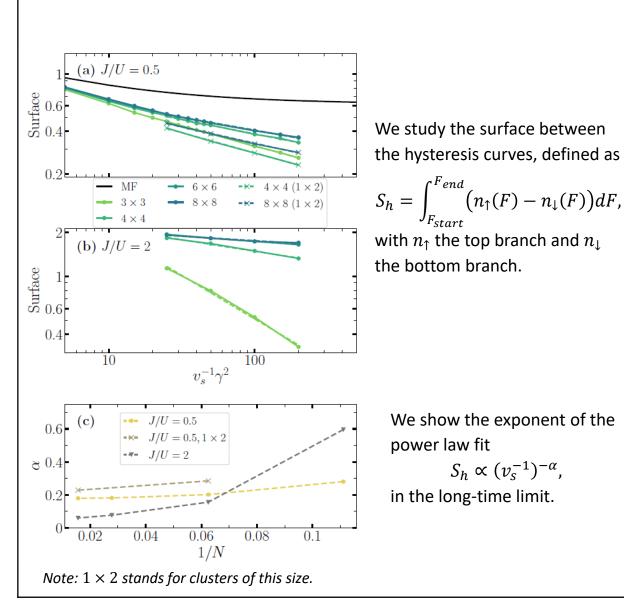


5. Results: dynamical hysteresis of $\langle \hat{n} \rangle = \frac{1}{N} \langle \sum_{i} \hat{a}_{i}^{+} \hat{a}_{i} \rangle$

If we choose clusters of size one, i.e. the single cavities, we include classical fluctuations and on-site quantum fluctuations.



6. Results: the hysteretic surface



(a) $v_s^{-1}\gamma^2 = 25$ 30 $\langle \hat{n} \rangle$ $\langle \hat{n} \rangle$ -10 30 (b) $v_s^{-1}\gamma^2 = 25$ 4×4 - 5 × 5 -6×6 20MF \mathbf{X} 10 $v_{s,1}^{-1}\gamma^2 = 5$ 40 $v_{s,2}^{-1}\gamma^2 = 25$ (c) 6 × 6 $v_{s,3}^{-1}\gamma^2 = 50$ 30 MF: $v_{s,1}^{-1}\gamma^2$ \approx_{20} _____MF: $v_{s,2}^{-1}\gamma^2$ --- MF: $v_{s,3}^{-1}\gamma^2$ 100.10.20.30.40.50.6 0 F/U

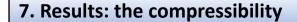
We show the compressibility,
 defined as

$$K = \frac{\langle \widehat{N^2} \rangle - \langle \widehat{N} \rangle^2}{\langle \widehat{N} \rangle},$$

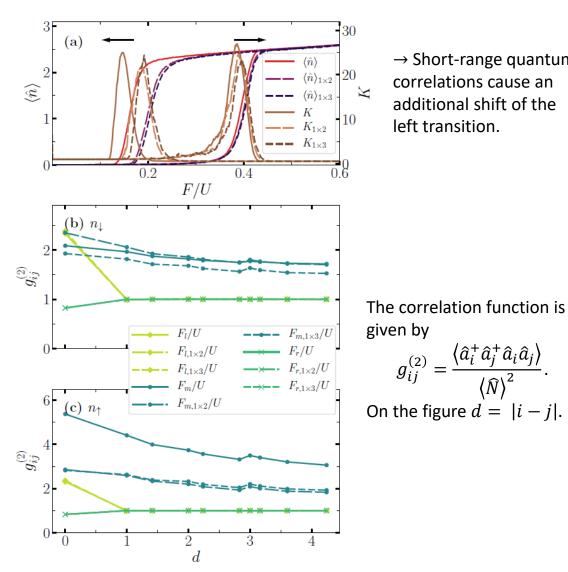
With the number operator $\langle \hat{N} \rangle = \langle \sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} \rangle.$

→The mean-field method drastically underestimates the number of fluctuations.

→ Subextensive scaling of the maxima of the peaks, indicating the formation of domains.



8. Results: the correlation function



 \rightarrow Short-range quantum correlations cause an additional shift of the left transition.

 $\langle \hat{a}_i^+ \hat{a}_j^+ \hat{a}_i \hat$ On the figure d = |i - j|.

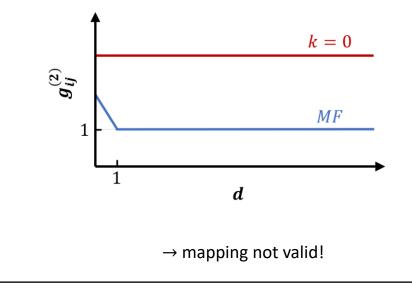
9. Results: mapping to single Kerr cavity

There exists a mapping [3] of the model Hamiltonian onto a single Kerr cavity. It is based on the Fourier transform of the Hamiltonian and the assumption that all $\mathbf{k} \neq 0$ modes can be neglected.

$$\widehat{H}_{BH} \xrightarrow{maps onto} \widehat{H} = \omega_0 \widehat{a}_0^+ \widehat{a}_0 + F_{eff} (\widehat{a}_0^+ + \widehat{a}_0) + \frac{U_{eff}}{2} \widehat{a}_0^+ \widehat{a}_0^+ \widehat{a}_0 \widehat{a}_0$$

The validity of neglecting this term is however not obvious.

For the k = 0 mode and the mean-field method one expects results like



Manuscript in preparation.

[3] W. Casteels, R. Fazio, and C. Ciuti, Phys. Rev. A 95, 012128 (2017)