

A Geometric Perspective on Variational Methods in Quantum Mechanics

Tommaso Guaita, Max Planck Institute of Quantum Optics, Garching *Lucas Hackl*, QMATH, Department of Mathematical Sciences, University of Copenhagen

Differential Geometry of Variational Manifolds:

Variational ansatz: real differentiable manifold embedded in Hilbert space

 $\mathcal{M} = \{ |\psi(x)\rangle \in \mathcal{H} : x \in A \subseteq \mathbb{R}^n \}$

Tangent space: local directions of state change under variations of parameters

$$\mathcal{T}_{\psi_0}\mathcal{M} = span_{\mathbb{R}} \left\{ |V_{\mu}(x_0)\rangle = \frac{\partial}{\partial x^{\mu}} |\psi(x)\rangle \right|_{x=x_0}$$

Differential geometry structures: defined on $\mathcal{T}_{\psi_0}\mathcal{M}$ by Hilbert space inner product

 $\langle V_{\mu} | V_{\nu} \rangle = \frac{1}{2} \left(\frac{g_{\mu\nu}}{g_{\mu\nu}} + i\omega_{\mu\nu} \right)$

✤ Riemannian Metric

→ Symplectic Form

Kähler Structures of Variational Manifolds:

Variational manifolds are:

- $g_{\mu\nu}$ symmetric, definite positive $\longrightarrow G_{\mu\nu} = (g^{-1})^{\mu\nu}$ $\omega_{\mu\nu}$ anti-symmetric $\longrightarrow \Omega_{\mu\nu} = (\omega^{-1})^{\mu\nu}$ • Riemannian manifolds
- Symplectic manifolds

At each point a tangent space projector is defined, thanks to the notion of distance given by the metric

$$\mathbb{P}_{\psi_0}|\psi\rangle \equiv \underset{\phi \in \mathcal{T}_{\psi_0}\mathcal{M}}{\operatorname{arg\,min}} \|\phi - \psi\| = |V_{\mu}\rangle \ \mathrm{G}^{\mu\nu} \ 2 \ \mathrm{Re} \ \langle V_{\nu}|\psi\rangle$$

The manifold is a Kähler manifold if metric and symplectic structures satisfy the compatibility condition:

$$J = -G\omega$$

$$J^{2} = -\mathbb{I}$$

$$|X\rangle \in \mathcal{T}_{\psi}\mathcal{M}$$

$$\rightarrow i.e. \text{ the tangent space is a complex linear space}$$

For a Kähler manifold the tangent space projector commutes with multiplication by the imaginary unit

$$\mathbb{P}i|X\rangle = i\mathbb{P}|X\rangle$$

 \longrightarrow Important for the equivalence of variational principles

If necessary defined as *pseudo-inverse*

Time Dependent Variational Principle for Real Time Evolution

Aim: define a time evolution on the variational manifold that suitably approximates the Hilbert space evolution generated by the many-body Hamiltonian \widehat{H} .

Approaches: two different approaches are possible, corresponding to the two geometric structures of the manifold.

McLachlan Variational Principle

 $\frac{-i\hat{H}|\psi}{\psi(x(t))}$ Time evolution defined by applying the *tangent space projector* to exact time evolution: $|\delta\psi(t)\rangle = \mathbb{P}_{\psi(t)}(-i\hat{H})|\psi(t)\rangle$ $\Rightarrow \dot{x}^{\mu} = -G^{\mu\nu} 2 \operatorname{Im} \langle V_{\nu} | \hat{H} | \psi(t) \rangle$ Evolution minimises local truncation error:

 $|\delta\psi(t)\rangle = \underset{\delta\psi \in \mathcal{T}_{\psi}\mathcal{M}}{\arg\min} \left\|\delta\psi - (-i\widehat{H})|\psi(t)\rangle\right\|$

Dirac Variational Principle

Time evolution defined through *Hamilton equations* on symplectic manifold: Analogous to classical phase space $\frac{d}{dt} \begin{pmatrix} \vec{q} \\ \vec{p} \end{pmatrix} = \Omega \begin{pmatrix} \partial_q E \\ \partial_p E \end{pmatrix}$

 $\dot{x}^{\mu} = -\Omega^{\mu\nu} \,\partial_{\nu} E(x)$

with
$$E(x) = \langle \psi(x) | \hat{H} | \psi(x) \rangle$$

Evolution minimises Schrödinger action:

$$\int \mathcal{L}(x, \dot{x}) dt = \int \operatorname{Re}\langle \psi(x) | (i \frac{d}{dt} - \hat{H}) | \psi(x) \rangle dt$$

Properties of Real Time Evolutions

McLachlan Variational Principle

If, for an observable \hat{A} ,

- $\hat{A}|\psi\rangle \in T_{\psi}\mathcal{M}, \ \forall \psi \in \mathcal{M}$
- $\left[\widehat{H}, \widehat{A}\right] = 0$

then $A(t) \equiv \langle \psi(t) | \hat{A} | \psi(t) \rangle$ is a constant of motion.

Kähler equivalence

The Dirac and McLachlan variational principles are equivalent for every Hamiltonian iff the variational manifold is Kähler

Indeed the corresponding equations of motion can be written as

$$\mathbb{P}_{\psi} \left(\frac{d}{dt} + i \hat{H} \right) |\psi\rangle = 0 \qquad McLachlan$$
$$\mathbb{P}_{\psi} \left(i \frac{d}{dt} - \hat{H} \right) |\psi\rangle = 0 \qquad Dirac$$

Differ by a factor *i* that, in
Kähler manifolds can be commuted through the projector

Dirac Variational Principle

- The energy $E(x) = \langle \psi(x) | \hat{H} | \psi(x) \rangle$ is always conserved.
- A state that minimises the energy on the variational manifold (approximate ground state) is a stationary point of time evolution.

Geometric insight on linearised time evolution also gives effective approaches for:

- Low-lying excitation spectrum
- Spectral response functions

