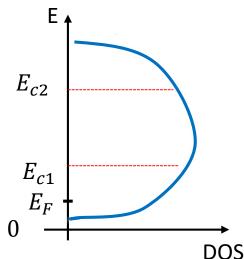


Particle Density Mobility Edge

P.Brighi, D. A. Abanin and M. Serbyn

Single Particle Mobility Edge


 Non-interacting fermions in a random potential (Anderson, 1958):

$$\hat{H} = t \sum_{\langle i,j \rangle} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_i \epsilon_i \hat{n}_i , \quad \epsilon_i \in [-W, W]$$

- Resulting eigenstates are either localized or $|\psi_l(i)|^2 \sim \begin{cases} \frac{1}{\xi^d} \exp\left(-\frac{|i-l|}{\xi}\right) \ localized \\ \frac{1}{V} \ extended \end{cases}$ is the extended
- In d=1,2 all eigenstates are localized ∀ W > 0 (Abrahams et al.,1979)
 E ▲
- In d>2 localized and extended states occupy different bands, separated by mobility edges E_c (Mott, 1967).

$$\sigma(T) \propto \exp(-\frac{E_c - E_F}{T})$$

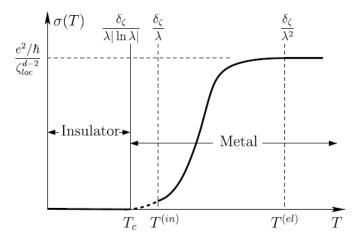
Metal-insulator transition at T = 0

Many-Body Mobility Edge

- European Research Council Established by the European Commission
- Weakly interacting fermions in a random potential (Basko et al., 2006; Gornyi et al., 2005):

$$\hat{H} = t \sum_{\langle i,j \rangle} (c_i^{\dagger} c_j + \text{h.c.}) + \sum_i \epsilon_i \hat{n}_i + V \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j$$

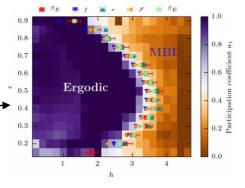
- Localization is stable under determinate conditions
- Basko et al. predict extensive many-body mobility edge (MBME) \mathcal{E}_c :

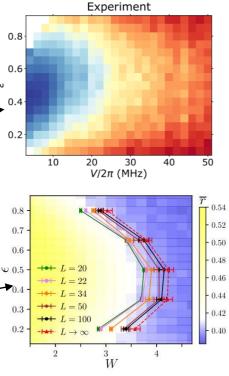

$$\sigma(T) = \sigma[E(t)],$$

$$E(T) > \mathcal{E}_{c}$$

$$\sigma(T) \propto \exp\left(-\frac{\mathcal{E}_{c} - E(T)}{T}\right),$$

$$E(T) < \mathcal{E}_{c}$$

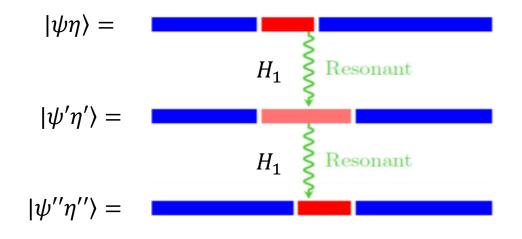

• Metal-insulator transition at $T_c > 0$



Stability of Many-Body Mobility Edge

Numerical Studies

- Evidence of MBME in small systems through exact diagonalization (ED) Luitz et al. → ^{0.8}
 PRB **91**, 2015; Serbyn et al. PRX ^{0.3}
 5, 2015; Geraedts et al. PRB **95**, 2017
- Recent experiments also reported mobility edge at least on intermediate timescales -Guo et al. arXiv:1912.02818, 2019
- Novel tensor network approaches show marks of MBME in large systems - Brighi et al. arXiv:2005.02999, 2020; Chanda et al. arXiv:2006.02860, 2020



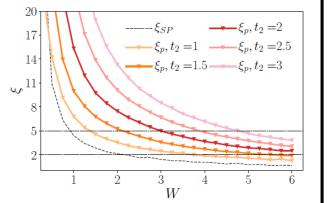
Arguments Supporting Instability

- De Roeck et al. (PRB **93**, 2016) recently questioned stability of localization in systems with MBME
- Locally ergodic regions (bubbles), due to flucutations, move through the lattice and resonantly hybridize manybody states

$$\frac{|\langle \Psi \eta | H_1 | \Psi' \eta' \rangle|}{|E(\eta) - E(\eta') + E(\Psi) - E(\Psi')|} \gg 1$$

Mobility Edge in Particle Density

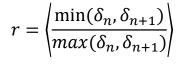
Constrained Hopping Model

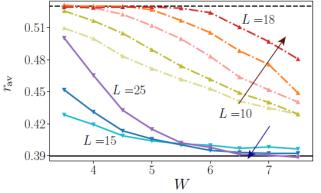

• Using a kinetically constrained model, we obtain MBME in particle density ν

$$\hat{H} = t_1 \sum_{i=1}^{L-1} (c_i^{\dagger} c_{i+1} + \text{h.c.}) + \sum_{i=1}^{L} \epsilon_i \hat{n}_i + t_2 \sum_{i=2}^{L-1} (c_{i-1}^{\dagger} \hat{n}_i c_{i+1} + \text{h.c.})$$

• Hopping parameter t_2 implements pair hopping:

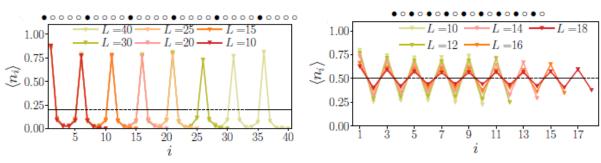
 $t_2: \bullet \bullet \circ \leftrightarrow \circ \bullet \bullet$


- Tuning t_2/t_1 we can achieve density dependent localization
- Novel approach, albeit qualitatively equivalent, to the mobility edge


 Density dependent localization enables simple initialization of bubbles in matrix product states (MPS)

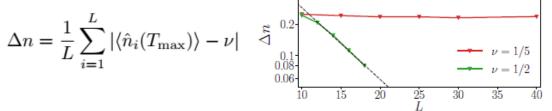
ED Evidence of Particle Density Mobility Edge

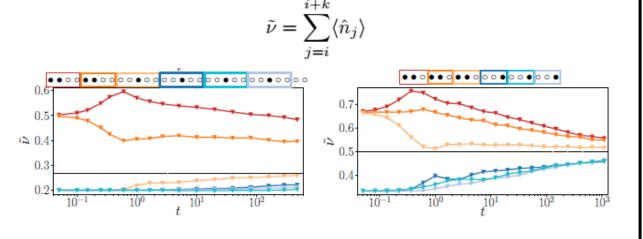
• Study of typical eigenstate measures as level spacing ratio *r* through exact diagonalization and shift-invert



• Comparison of $\nu = 1/5$ (blue curves) and $\nu = 1/2$ (red curves) shows

different behavior after a critical disorder


• TEBD quench dynamics of density waves (DW) shows similar differences at large system size


Mobility Edge in Particle Density

Evidence of MBME from Quench Dynamics

Scaling of the deviation from the thermal density Δn reveals exponential decay for $\nu = 1/2$. Lower density has instead constant Δn

 Dynamics of the coarse grained density v from initial states including thermal bubbles highlights the absence of relaxation at low density even at large system size

Discussion and Outlook

- Our model shows strong evidence of many-body mobility edge in particle density both in eigenstates statistics and quench dynamics for large systems
- The mobility edge in particle density enables a simple initialization of states in a certain density sector allowing the study of MBME in large systems through MPS
- Furthermore, it allows the study of states including thermal regions, thus enabling direct investigation of the arguments of De Roeck et al.
- With respect to that, our simulations seem to rule out the mobility of the bubble in the localized regime
- Interestingly, a mechanism similar to the one described by our model could be realized in state of the art experiments with the Aubry-Andre' bosonic Hamiltonian
- Finally, more efficient algorithms could lead to the study of even larger systems

Thank you for your attention!

(For major details please refer to: arXiv:2005.02999)