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● Ruled by quantum fluctuations at T = 0  
  

● Discontinuous thermodynamic properties 
→ different symmetries 
→ order/disorder transition  

  
● Energy-gap closure 

  
● Diverging length scale 
→ long-range correlations

Ginzburg-Landau: 
minimize ground-state energy 
→ free-energy analysis

QPT

S. Sachdev (1998) 
“Quantum phase transitions” 
Cambridge Univ. Press

Quantum phase transitions 



Quantum phase transitions 
in a dissipative framework?

Criticality: a different paradigm? 
  the system may want to reach a steady state (t → ∞) 
  ordering, if exists, has a dynamical origin 
  short-range correlations could be important 



We consider a spin-1/2 XYZ anisotropic Heisenberg model 

in the presence of incoherent dissipative spin-flips (z axis)

● x-y Hamiltonian anisotropy generates a competition 
between coherent dynamics & dissipative effects 

● experimentally implementable with trapped ions 

● The master equation has a       symmetry 
    which may spontaneously break in ordered phases

(e.g.: the paramagnetic / ferromagnetic transition in the Ising model)

A spin-system toy model



The master equation has a       symmetry 

which may spontaneously break in ordered phases

Single-site mean-field phase diagram

 

T.E. Lee, S. Gopalakrishnan, M.D. Lukin,  PRL (2013)

(e.g.: paramagnetic / ferromagnetic transition in the Ising model)

We study the paramagnet (PM) / ferromagnet (FM) 
steady-state phase transition



Physical mechanism 
importance of short-range correlations

J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, DR,  PRX 6, 031011 (2016)



single-site mean field

The 1 x 1 mean-field

the ferromagnet extends over a semi-infinite range of Jy 
for                   the magnetization vanishes (PM)  
   

progressive deterioration of the purity                       :

PM @ PM @
pure state 

(fully polarized along z)
fully mixed state 

(unpolarized)



The 2 x 1 cluster mean-field

two-site mean field

the ferromagnet extends over a finite range of Jy 
the PM at                   stabilizes over an extended region 
  

different nature of the two PM regions (purity):

PM @ PM @
nearly pure state 

(fully polarized along z)
nearly fully mixed state 

(unpolarized)



The 2 x 1 cluster mean-field @ large Jy

dissipative partcoherent part

The steady state for                 is almost fully mixed:

therefore

correlations              drastically modify the steady-state structure for 
  

dynamically-induced purity reduction

dynamical suppression of ferromagnetic ordering



The 2 x 1 cluster mean-field @ large Jy

ferromagnet

paramagnet

Initial condition:

dynamics does not strongly 
affect the magnetization

dynamics strongly affects 
magnetization @ long time

instability in the 
initial condition



Results for different dimensionalities



Due to extremely reduced dimensionality, mean field should fail 

Reminiscence of features predicted by mean field 

Presumably no phase transition

One-dimensional geometry



One-dimensional geometry

Mean field prediction: 
PM–to–FM transition

MF

Spin ordering signaled 
by the structure factor

(k = 0 ↔ FM     k = π ↔ AFM)



Finite-size scaling 
of numerical data

power-law decay

One-dimensional geometry

RK / QT

MPO + MF

MPO + MF

RK / QT



PM reminiscent

FM reminiscent
xx correlators 

clearly exponential 

exponential @ large r

One-dimensional geometry



Two-dimensional geometry

What is the fate of mean field? 

Presumably there is a phase transition 
  

(existence of a symmetry-broken phase)



Mean-field phase diagram
Cluster mean-field on a 2D square lattice

Extension of the symmetry-broken phase drastically reduced 
Boundaries & topology of the phase diagram change a lot

Two-dimensional geometry



Two-dimensional geometry

FM phase seems to survive in the thermodynamic limit 
  

no revival @ large J observed for larger clusters
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Two-dimensional geometry

FM phase corroborated by correlation functions: 
 → PM phase: exponential decay 
 → FM phase: saturation 
 → crossover region: unclear at small size



Corner-space renormalization

R. Rota, F. Storme, N. Bartolo, R. Fazio, C. Ciuti, PRB 95, 134431 (2017)

Angularly averaged susceptibility:

Susceptibility tensor:



Von Neumann entropy:

Contrary to conventional transition (where the FM phase has a lower entropy), here 
the ferromagnetic phase has larger entropy than the paramagnetic one.

The behavior of the S vs. Jy resembles  
that of the entropy vs. temperature  
in 2nd order thermal phase transitions

Corner-space renormalization



Numerical linked cluster expansions

It is also possible to extrapolate the critical exponent associated to the phase transition 
→ Padé analysis 

A. Biella, J. Jin, O. Viyuela, C. Ciuti, R. Fazio, DR,  PRB 97 035103 (2018)



Projected pair entangled operators (PEPOs)

A. Kshetrimayum, H. Weimer, R. Orus,  Nat. Commun. 8, 1291 (2017)

m = ⟨σ x
j ⟩

Δ = ⟨⟨ρss |ℒ |ρss⟩⟩
εn = ∑

i|νi<0

νi(ρn)

PEPO bond dimension: D = 4 
(results consistent also with larger values of D)



Gutzwiller MC approach

W. Casteels, R. M. Wilson, M. Wouters, PRA 97, 062107 (2018)

extensive mean-field Gutzwiller wave-function MC 
substantially agree with the previous picture
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Variational MC with neural networks

A. Nagy, V. Savona, PRL 122, 250501 (2019)

α = M/N

Jx /γ = 0.9, Jy /γ = 1.2, Jz /γ = 1

The large  behavior seems to be 
not compatible with a paramagnetic phase 
(at least for the small considered sizes)…
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