Numerical & variational methods for open quantum systems: toy-model example

Davide Rossini

INFN

VaQuM2020 Lyon

Istituto Nazionale Fisica Nucleare Sezione di Pisa

Quantum phase transitions

Quantum phase transitions in a dissipative framework?

Criticality: a different paradigm?

- \longrightarrow the system may want to reach a steady state ($t \rightarrow \infty$)
- ____ ordering, if exists, has a <u>dynamical origin</u>
- ____ short-range correlations could be important

A spin-system toy model

We consider a spin-1/2 XYZ anisotropic Heisenberg model

$$H = \sum_{\langle i,j \rangle} (J_x \sigma_i^x \sigma_j^y + J_y \sigma_i^y \sigma_j^y + J_z \sigma_i^z \sigma_j^z)$$

in the presence of incoherent dissipative spin-flips (z axis)

$$\partial_t \rho = -i[H,\rho] + \gamma \sum_i \left(\sigma_i^- \rho \sigma_i^+ - \frac{1}{2} \{ \sigma_i^+ \sigma_i^-, \rho \} \right)$$

- <u>x-y Hamiltonian anisotropy</u> generates a **competition** between coherent dynamics & dissipative effects
- experimentally implementable with trapped ions
- The master equation has a \mathbb{Z}_2 symmetry $\sigma_j^x, \sigma_j^y \to -\sigma_j^x, -\sigma_j^y$ which may **spontaneously break** in *ordered phases*

(e.g.: the paramagnetic / ferromagnetic transition in the Ising model)

The master equation has a \mathbb{Z}_2 symmetry $\sigma_j^x, \sigma_j^y \to -\sigma_j^x, -\sigma_j^y$

which may spontaneously break in ordered phases

(e.g.: paramagnetic / ferromagnetic transition in the Ising model)

Physical mechanism

importance of short-range correlations

J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, DR, PRX 6, 031011 (2016)

The 1 x 1 mean-field

• the <u>ferromagnet</u> extends over a **semi-infinite range of** J_y • for $J_y \to +\infty$ the magnetization vanishes (PM) • progressive deterioration of the purity $\mathcal{P} = \text{Tr}[\rho_{ss}^2]$:

 $\begin{array}{l} \mathsf{PM} \textcircled{@} J_y < J_y^c \\ \textit{pure state} \\ \textit{(fully polarized along z)} \end{array}$

 $\begin{array}{l} \mathsf{PM} \textcircled{@} J_y \to +\infty \\ \textit{fully mixed state} \\ \textit{(unpolarized)} \end{array}$

The 2 x 1 cluster mean-field

the <u>ferromagnet</u> extends over a *finite range of J_y* the PM at J_y → +∞ stabilizes over an <u>extended region</u>
 different nature of the two PM regions (purity):

PM @ $J_y < J_y^{c_1}$ nearly pure state (fully polarized along z) $\begin{array}{l} \mathsf{PM} \textcircled{@} J_y > J_y^{c_2} \\ \textit{nearly fully mixed state} \\ (unpolarized) \end{array}$

The 2 x 1 cluster mean-field @ large J_v

$$\partial_t \langle \sigma_j^\beta \rangle = -2 \sum_{\alpha = x, y, z} J_\alpha \epsilon_{\alpha\beta\gamma} \begin{bmatrix} \langle \sigma_j^\gamma \rangle \langle \sigma_{j+1}^\alpha \rangle + \boxed{\langle \sigma_j^\gamma \sigma_{j+1}^\alpha \rangle} \end{bmatrix} - \frac{\gamma}{2} \begin{bmatrix} \langle \sigma_j^\beta \rangle + \delta_{\beta z} (\langle \sigma_j^\beta \rangle + 2) \end{bmatrix}$$

coherent part dissipative part

The steady state for $J_y > J_y^{c_2}$ is almost fully mixed: $\rho_{SS}^{[2 \times 1]} \approx \rho^{[1]} \otimes \rho^{[2]}$ $\implies \langle \sigma_j^{\gamma} \sigma_{j+1}^{\alpha} \rangle = \langle \sigma_j^{\gamma} \rangle \langle \sigma_{j+1}^{\alpha} \rangle + \langle \Sigma_{j,j+1}^{\gamma,\alpha} \rangle \quad \text{where} \quad |\langle \Sigma_{j,j+1}^{\gamma,\alpha} \rangle| \ll 1$

therefore
$$\partial_t \langle \sigma_j^\beta \rangle = \mathcal{L}_{[1 \times 1]}^\beta - 2 \sum_{\alpha} J_{\alpha} \epsilon_{\alpha\beta\gamma} \langle \Sigma_{j,j+1}^{\gamma,\alpha} \rangle$$

 \odot correlations $\Sigma_{j,j+1}^{\gamma,\alpha}$ drastically modify the steady-state structure for $t \to +\infty$ \odot dynamically-induced purity reduction

dynamical suppression of ferromagnetic ordering

The 2 x 1 cluster mean-field @ large J_v

Results for different dimensionalities

Due to extremely reduced dimensionality, <u>mean field should fail</u>
 Reminiscence of features predicted by mean field
 Presumably <u>no phase transition</u>

6⁻¹

What is the **fate** of mean field?

Presumably there is a phase transition (existence of a symmetry-broken phase)

Cluster mean-field on a 2D square lattice

Extension of the <u>symmetry-broken phase</u> drastically reduced

Boundaries & topology of the phase diagram change a lot

FM phase seems to survive in the thermodynamic limit
on revival @ large J observed for larger clusters

Corner-space renormalization

Corner-space renormalization

Von Neumann entropy: $S = -\text{Tr}(\rho \log \rho)$

$$\max\left(\frac{\partial S}{\partial J_y}\right) \propto L^{\lambda}$$
$$\lambda = 1.6 \pm 0.2$$

The behavior of the S vs. J_y resembles that of the entropy vs. temperature in 2nd order thermal phase transitions

Contrary to conventional transition (where the FM phase has a lower entropy), here the ferromagnetic phase has larger entropy than the paramagnetic one.

Numerical linked cluster expansions

A. Biella, J. Jin, O. Viyuela, C. Ciuti, R. Fazio, DR, PRB 97 035103 (2018)

It is also possible to extrapolate the *critical exponent* associated to the phase transition \rightarrow Padé analysis

$$\chi_{\rm av} \sim |J_y - J_y^{\rm (c)}|^{-\gamma}$$

Projected pair entangled operators (PEPOs)

A. Kshetrimayum, H. Weimer, R. Orus, Nat. Commun. 8, 1291 (2017)

Gutzwiller MC approach

W. Casteels, R. M. Wilson, M. Wouters, PRA 97, 062107 (2018)

Variational MC with neural networks

A. Nagy, V. Savona, PRL 122, 250501 (2019)